Vugraphs for Appendix A.

OPTIMIZATION WITH RESPECT TO A VECTOR PARAMETER

- Problems in optimization commonly arise involving
 - real and complex vector parameters
 - complex scalar parameters
 - various constraints
- Frequently the quantity to be optimized is *not* analytic
- Need to have effective "power tools" for these problems

GRADIENT WITH RESPECT TO A REAL VECTOR PARAMETER

PROBLEM

APPROACH

Minimize (maximize) the quantity Q = Q(a) with respect to the real vector

parameter
$$\mathbf{a} = \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \vdots \\ \mathbf{a_N} \end{bmatrix}$$

Set
$$\nabla_{\mathbf{a}}\mathcal{Q} \stackrel{\mathsf{def}}{=} \begin{bmatrix} \frac{\partial \mathcal{Q}}{\partial a_1} \\ \frac{\partial \mathcal{Q}}{\partial a_2} \\ \vdots \\ \frac{\partial \mathcal{Q}}{\partial a_N} \end{bmatrix} = \mathbf{0}$$

• Will develop formal rules for computing $\nabla_{\mathbf{a}}\mathcal{Q}$.

REAL GRADIENT EXAMPLES

1. For
$$Q = \mathbf{b}^T \mathbf{a} = \mathbf{b}_1 \mathbf{a}_1 + \mathbf{b}_2 \mathbf{a}_2 + \dots + \mathbf{b}_N \mathbf{a}_N$$

$$\nabla_{\mathbf{a}} \mathcal{Q} = \begin{bmatrix} \frac{\partial \mathcal{Q}}{\partial \mathbf{a}_{1}} \\ \frac{\partial \mathcal{Q}}{\partial \mathbf{a}_{2}} \\ \vdots \\ \frac{\partial \mathcal{Q}}{\partial \mathbf{a}_{N}} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{N} \end{bmatrix} = \mathbf{b}$$

2. For
$$Q = \mathbf{a}^T \mathbf{B} \mathbf{a} = \sum_j \sum_k \mathbf{B}_{jk} \mathbf{a}_j \mathbf{a}_k$$

By a similar procedure: $\frac{\partial \mathcal{Q}}{\partial \mathbf{a}_j} = \sum_k (\mathbf{B}_{jk} + \mathbf{B}_{kj}) \mathbf{a}_k$

$$\Rightarrow \nabla_{\mathbf{a}} \mathcal{Q} = (\mathbf{B} + \mathbf{B}^T)\mathbf{a}$$
 (= 2Ba when B is symmetric)

GRADIENT WITH RESPECT TO A REAL VECTOR PARAMETER FOR SOME COMMON EXPRESSIONS

Quantity $\mathcal Q$	$\mathbf{a}^T\mathbf{b}$	$\mathbf{b}^T\mathbf{a}$	$\mathbf{a}^T\mathbf{B}\mathbf{a}$
Gradient $ abla_{\mathbf{a}}\mathcal{Q}$	b	b	2Ba

 $\underline{\text{Note:}}\ \mathbf{B}\$ is assumed to be symmetric.

GRADIENT WITH RESPECT TO A COMPLEX SCALAR QUANTITY

- Functions with dependence $\mathcal{Q}=\mathcal{Q}(a,a^*)$ are not analytic; therefore $\frac{\partial Q}{\partial a}$ does not exist.
- If a and a* are considered separate variables, then partial deriviatives usually exist and are given by

$$\frac{\partial Q}{\partial \mathbf{a}} = \frac{1}{2} \left(\frac{\partial Q}{\partial \mathbf{a_r}} - \jmath \frac{\partial Q}{\partial \mathbf{a_i}} \right) \quad \text{and} \quad \frac{\partial Q}{\partial \mathbf{a^*}} = \frac{1}{2} \left(\frac{\partial Q}{\partial \mathbf{a_r}} + \jmath \frac{\partial Q}{\partial \mathbf{a_i}} \right)$$

GRADIENT WITH RESPECT TO A COMPLEX SCALAR (cont'd.)

- For purposes of optimization, one sets $\frac{\partial \mathcal{Q}}{\partial a_r} = \frac{\partial Q}{\partial a_i} = 0$
- This can be done by defining

$$abla_a Q \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial Q}{\partial a_r} - \jmath \frac{\partial Q}{\partial a_i} \right) \quad \text{and} \quad
abla_{a^*} Q \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial Q}{\partial a_r} + \jmath \frac{\partial Q}{\partial a_i} \right)$$

and setting either $\nabla_a Q$ or $\nabla_{a^*} Q$ to zero.

COMPLEX GRADIENT RELATIONS (SCALAR PARAMETER)

Quantity Q	a*b	ab	$ \mathbf{a} ^2 = \mathbf{a}\mathbf{a}^*$
Gradient $ abla_a Q$	0	b	a*
Gradient $ abla_{a^*}Q$	b	0	a

CHECKING FOR A MINIMUM OR MAXIMUM

1. The condition

$$\nabla_{a}Q = 0$$
 or $\nabla_{a^{*}}Q = 0$

determines a stationary point.

2. For a minimum or maximum, let $\nabla_{ab}^2 Q \stackrel{\text{def}}{=} \nabla_a (\nabla_b Q)$. Then the following *two* conditions must hold:

$$\left(\nabla_{aa}^2 Q\right) \cdot \left(\nabla_{a^*a^*}^2 Q\right) - \left(\nabla_{aa^*}^2 Q\right)^2 < 0$$

and

$$\nabla^2_{aa^*}Q$$
 $\left\{\begin{array}{l} > 0 \text{ for a minimum} \\ < 0 \text{ for a maximum} \end{array}\right.$

COMPLEX GRADIENT ILLUSTRATED (SCALAR PARAMETER)

Find the complex scalar parameter a to minimize

$$Q = (\mathbf{x} - \mathbf{a}\mathbf{y})^{*T}(\mathbf{x} - \mathbf{a}\mathbf{y})$$

Apply the complex gradient, using results from the table:

$$Q = \mathbf{x}^{*T}\mathbf{x} - \mathbf{a}^{*}\mathbf{y}^{*T}\mathbf{x} - \mathbf{a}\mathbf{x}^{*T}\mathbf{y} + |\mathbf{a}|^{2}\mathbf{y}^{*T}\mathbf{y}$$

$$\nabla_{\mathbf{a}^{*}}Q = -\mathbf{y}^{*T}\mathbf{x} + \mathbf{a}\mathbf{y}^{*T}\mathbf{y} = 0$$

This yields the result $\left| \mathbf{a} = \frac{\mathbf{y}^{*T}\mathbf{x}}{\mathbf{y}^{*T}\mathbf{y}} \right|$

$$\mathbf{a} = \frac{\mathbf{y}^{*T}\mathbf{x}}{\mathbf{y}^{*T}\mathbf{y}}$$

Note: The gradient can also be computed without expanding as

$$\nabla_{\mathbf{a}^*} Q = -\mathbf{y}^{*T}(\mathbf{x} - \mathbf{a}\mathbf{y})$$

COMPLEX GRADIENT (cont'd.)

The result can be further checked for a minimum. Since

$$\nabla_{\mathbf{a}^*}Q = -\mathbf{y}^{*T}(\mathbf{x} - \mathbf{a}\mathbf{y})$$
 and $\nabla_{\mathbf{a}}Q = -(\mathbf{x} - \mathbf{a}\mathbf{y})^{*T}\mathbf{y}$

therefore

$$\nabla_{aa^*Q}^2 = \nabla_a(\nabla_{a^*Q}) = \mathbf{y}^{*T}\mathbf{y}$$
 while $\nabla_{aa}^2Q = \nabla_{a^*a^*Q}^2 = 0$

Thus the two conditions for a minimum

$$\left(\nabla_{aa}^2 Q\right) \cdot \left(\nabla_{a^*a^*}^2 Q\right) - \left(\nabla_{aa^*}^2 Q\right)^2 = 0 - (\mathbf{y}^{*T}\mathbf{y})^2 < 0$$

and

$$\nabla_{\mathbf{a}\mathbf{a}^*}^2 Q = \mathbf{y}^{*T}\mathbf{y} > 0$$

are satisfied.

COMPLEX GRADIENT WITH RESPECT TO A VECTOR PARAMETER

$$\nabla_{\mathbf{a}} \mathcal{Q} = (\nabla_{\mathbf{a}^*} \mathcal{Q}^*)^* \stackrel{\text{def}}{=} \frac{1}{2} \left(\nabla_{\mathbf{a_r}} \mathcal{Q} - \jmath \nabla_{\mathbf{a_i}} \mathcal{Q} \right)$$

Quantity ${\cal Q}$	$\mathbf{a}^{*T}\mathbf{b}$	$\mathbf{b}^{*T}\mathbf{a}$	$\mathbf{a}^{*T}\mathbf{B}\mathbf{a}$
Gradient $ abla_{\mathbf{a}}\mathcal{Q}$	0	\mathbf{b}^*	(Ba)*
Gradient $ abla_{\mathbf{a}^*}\mathcal{Q}$	b	0	Ba

Note: ${f B}$ is assumed Hermitian symmetric.

CONSTRAINED OPTIMIZATION

PROBLEM

Minimize (maximize) the quantity $Q(\mathbf{a})$ subject to a complex constaint $C(\mathbf{a}) = 0$.

APPROACH

Form the Lagrangian

$$\mathcal{L} = \mathcal{Q}(\mathbf{a}) + \lambda \mathcal{C}(\mathbf{a}) + \lambda^* \mathcal{C}^*(\mathbf{a})$$

and set and set the *complex gradient* $\nabla_{\mathbf{a}}\mathcal{L}$ or $\nabla_{\mathbf{a}^*}\mathcal{L}$ to zero.

CONSTRAINED OPTIMIZATION (cont'd.)

WHY IT WORKS

Observe that

$$\mathcal{L} = \mathcal{Q}(\mathbf{a}) + \lambda \mathcal{C}(\mathbf{a}) + \lambda^* \mathcal{C}^*(\mathbf{a})$$

$$= \mathcal{Q}(\mathbf{a}) + 2 \operatorname{Re} \lambda \mathcal{C}(\mathbf{a})$$

$$= \mathcal{Q}(\mathbf{a}) + 2 \lambda_r \mathcal{C}_r(\mathbf{a}) - 2 \lambda_i \mathcal{C}_i(\mathbf{a})$$

It is equivalent to adding two *real* constraints, but the first form is more convenient for use with the complex gradient.

Note: When $C(\mathbf{a})$ is *real*, the last term can be dropped and λ becomes a *real* Lagrange multiplier.

CONSTRAINED OPTIMIZATION ILLUSTRATED

Find a to maximize

$$Q = \mathbf{a}^{*T}\mathbf{B}\mathbf{a}$$
 (B Hermitian symmetric)

subject to the constraint $a^{*T}a = 1$.

The constraint is first written as

$$C(\mathbf{a}) = 1 - \mathbf{a}^{*T}\mathbf{a} = 0$$

where it can be observed that $C(\mathbf{a})$ is *real*.

CONSTRAINED OPTIMIZATION ILLUSTRATED (cont'd.)

The Lagrangian is

$$\mathcal{L} = \mathbf{a}^{*T}\mathbf{B}\mathbf{a} + \lambda(1 - \mathbf{a}^{*T}\mathbf{a})$$

and the complex gradient condition follows:

$$\nabla_{\mathbf{a}^*} \mathcal{L} = \mathbf{B}\mathbf{a} - \lambda \mathbf{a} = \mathbf{0} \implies \mathbf{B}\mathbf{a} = \lambda \mathbf{a}$$

This shows that a must be an eigenvector of B, but since

$$Q = \mathbf{a}^{*T}(\mathbf{B}\mathbf{a}) = \mathbf{a}^{*T}(\lambda \mathbf{a}) = \lambda$$

the desired eigenvector to maximize Q is the one corresponding to the *largest* eigenvalue.